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Abstract

Knowledge graphs represent a special kind of directed graph in which entities (nodes) are
connected by labeled relations (edges). An important and longstanding task in the domain
of knowledge graphs is predicting new links between entities given an incomplete subset of
the relations in the graph. In this paper, we survey an evolution of approaches that have
been proposed and tested for link prediction which exploit existing relations and features
of nodes within a knowledge graph, including relational Markov networks, path ranking
algorithms, stochastic relational models, and message passing via graph neural networks.
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1 Introduction

1.1 Knowledge graphs

A knowledge graph (KG) is a graph defined over a set of entities E , corresponding to vertices,
and a set of relations R, corresponding to edges. A relation triplet or fact is a triplet of the
form (h, r, t) where h, t ∈ E and r ∈ R. We then define Ggold ⊂ E ×R× E as the set of gold
facts; that is, Ggold is the set of all relation triplets which hold for entities and relations. If
a triplet is in Ggold, it is a positive triplet, otherwise, it is a negative triplet.

KGs represent a useful abstraction for organizing information with many real-world
applications. They are able to mine, organize, and manage knowledge from large-scale
data to improve the quality of information services for users, including in tasks such as
information retrieval, recommendation, question answering, and social networking [3] [25].
Prominent examples of KGs today include YAGO [18], WordNet [13], Freebase [1], Wikidata
[23], the Never-Ending Language Learning system (NELL) [2], and the Google Knowledge
Graph [16].

1.2 Knowledge reasoning and link prediction

KGs are often incomplete in practice, usually due to errors in data or limited access to data
in their construction. This means that the knowledge a graph embodies does not recognize
entities or connections between entities that should exist within it. An important practical
consequence of this is that some of these aspects of a KG must be inferred from available
information—a task referred to as knowledge reasoning, since it is often seen as a process of
inferring new conclusions from existing data.

More formally, the general problem of knowledge reasoning is, given an incomplete knowl-
edge graph G ⊂ Ggold, to use techniques (often based in machine learning) to infer entities,
relations, relation triplets, entity attributes, and more, in order to bring G closer to Ggold.
One prominent component of knowledge reasoning is link prediction—also referred to as
relational inference or triplet classification—in which some candidate triplet not in G is
classified as either a positive triplet or a negative triplet [17]. For example, if given the
triplets (Microsoft, IsBasedIn, Seattle), (Seattle, StateLocatedIn, Washington), (Washing-
ton, CountryLocatedIn, USA) in a KG, we would like to predict the missing positive triplet
(Microsoft, IsBasedIn, USA).

Multiple classes of methods have been proposed for link prediction. Early methods
focused on applying logic rules to the KG to predict the presence or absence of missing
relations. While these approaches have the advantage of being semantically intuitive, many
of them suffer from scalability and generalizability issues [3]. Other popular methods focus
on the applications of statistical reasoning and machine learning to KGs. In this paper,
we present a mathematical overview of several methods that fall into this latter category,
including relational Markov networks, stochastic relational models, path ranking algorithms,
and graph neural networks. While our review is far from exhaustive, it provides a succinct
look into the evolution of link prediction methods in the literature and the unique ways in
which they exploit graph structure for inference.
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2 Approaches

2.1 Relational Markov networks

Historically, most of the work on classification models involves data where individual data
points are assumed to be independent and identically distributed. While these assumptions
can provide good approximations in some contexts, many data sets involve highly relational
data where the classes of different data points are highly correlated. In particular, in settings
where graph representations are natural, such strong independence assumptions severely
limit the types of relationships between variables that can be modeled.

In an effort to exploit the graph structure inherent in relational data, Taskar et al. (2001)
apply the framework of probabilistic relational models (PRMs) [9, 4], a relational version
of Bayesian networks, to classification and clustering of entities over relational data [22].
However, PRMs are directed models, and so in order to form valid probability distributions
over variables, the underlying graphical model must be acyclic. This acyclicity constraint
severely limits the types of dependencies that can be modeled. As a result, Taskar et al.
extend this PRM framework to undirected models in the form of relational Markov networks
(RMNs) applying it first to entity classification [20] and then to link prediction [21]. The
authors model link prediction as a special case of entity classification in which relations
between entities are treated as first-class citizens.

Relational schema A relational schema describes attributes and relations of a set of
instance types E = {E1, ..., En}. Each type E ∈ E is associated with three sets of attributes:
content attributes E.X, which represent properties of the entity itself; label attributes E.Y ,
which represent the properties to be predicted; and reference attributes E.R, which represent
entities to which an entity is related.

An instantiation I of a schema E specifies the set of entities I(E) of each entity type
E ∈ E and the values of all attributes for all of the entities. I.X, I.Y , and I.R denote the
content, label, and reference attributes in the instantiation I, and I.x, I.y, and I.r denote
the values of those attributes. I.r is called an instantiation graph and specifies the set of
entities (nodes) and their reference attributes (edges).

Relational Markov networks Let V denote a set of discrete random variables and
v an assignment of values to V. A Markov network defines a joint distribution over V
consisting of a qualitative component, the undirected dependency graph, and a quantitative
component, the set of parameters corresponding to the probability distribution over the
nodes in the graph.

In particular, let G = (V, E) be an undirected graph with a set of cliques C(G). Each
c ∈ C(G) is associated with a set of nodes Vc and a clique potential ϕc(Vc), which is a
non-negative function defined on the joint domain of Vc that represents the compatibility of
different assignments to variables. Let Φ = {ϕc(Vc)}c∈C(G). The Markov network (G,Φ)
defines a distribution

P(v) =
1

Z

∏
c∈C(G)

ϕc(vc) (1)

where Z is the partition function given by Z =
∑

v′ ϕc(v
′
c).

We can similarly define conditional Markov networks as follows. Let X be a set of
random variables on which we condition and Y be a set of target random variables. A
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conditional Markov network (G,Φ) defines the distribution

P(y|x) = 1

Z(x)

∏
c∈C(G)

ϕc(xc,yc) (2)

where Z(x) is the partition function given by Z(x) =
∑

y′ ϕc(xc,y
′
c).

Before finally defining relational Markov networks, we must define the notion of relational
clique templates, which are used to specify cliques of interest for our model. In particular,
a relational clique template C = (F,W,S) consists of F = {Fi}, a set of entity variables;
W(F.R), a Boolean formula using conditions of the form Fi.Rj = Fk.Rl; and a selected
subset F.S ⊆ F.X ∪ F.Y of content and label attributes in F. This clique template allows
us to query a specific set of cliques in our instantiation graph

C(I) := {c = f .S : f ∈ I(F) ∧W(.r)} (3)

where f is a tuple of entities {fi} in which each fi is of type E(Fi), I(F) = I(E(F1)) ×
· · · × I(E(Fn)) denotes the cross-product of entities in the instantiation, the clause W(f .r)
ensures that the entities are related to each other in the desired way, and f .S extracts the
desired attributes from the entities which match the query.

Now, a relational Markov network (RMN) M = (C,Φ) specifies a set of clique tem-
plates C and corresponding potentials Φ = {ϕC}C∈C to define a conditional probability
distribution

P(I.y|I.x, I.r) = 1

Z(I.x, I.r)
∏
C∈C

∏
c∈C(I)

ϕC(I.xc, I.yc) (4)

where Z(I.x, I.r) is the normalizing partition function

Z(I.x, I.r) =
∑
I.y′

ϕC(I.xc, I.y′
c) (5)

Estimating parameters Given a fixed set of relational clique templates, the task of
learning an RMN reduces to estimating the weights w for clique potentials Φ. In particular,
given an instantiation I of the schema, an RMN M produces an unrolled Markov network
over the attributes of entities in I. The cliques in the unrolled graph are determined by the
clique templates C ∈ C, where each c ∈ C shares a clique potential ϕC .

A specific choice of parameters w specifies a particular instance of an RMN, which in-
duces a probability distribution Pw over the unrolled Markov network. Given some data
set D, the likelihood of the data is

∏
d∈D Pw(yd|xd), which can be optimized by gradient

descent over w. Computing this gradient requires inference over the unrolled Markov net-
work, which can be intractable over large networks. Therefore, Taskar et al. suggest the
use of belief propagation [20].

2.2 Stochastic relational models

Yu et al. approached the task of relational inference by modeling the relationships between
all pairs of entities in a KG using multiple entity-wise Gaussian processes in a family of
models they call stochastic relational models (SRMs) [24]. In essence, SRMs aim to model
the observed relations in a KG using a latent variable model whose hyperparameters can be
learned through variational inference. These optimal hyperparameters can then be used to
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calculate the marginal posterior probabilities for relations between new pairs of entities in
the KG.

The authors first consider pairwise, asymmetric links r ∈ R between entities u ∈ U and
v ∈ V, noting that the two sets U ,V can be the same or different, as well that u and v
may be used to represent the identity and/or attribute vectors of entities in their respective
sets. Let ri,n ≡ r(ui, vn) denote a relation of type r between entities ui and vn. The first
key assumption of SRMs is that the observable links r are derived as local measurements
of a real-valued latent relational function t : U × V → R and that each link ri,n is solely
dependent on its latent value ti,n, modeled by the likelihood P(ri,n|ti,n). The second key
assumption is that the latent relational function t is generated by a tensor interaction of
two independent, entity-specific Gaussian processes, one acting on U that is parameterized
by θΣ and the other acting on V that is parameterized by θΩ. Together, these Gaussian
processes help define a Bayesian prior P(t|θ) for the latent variable t. The evidence under
this prior is then defined as:

P(RI|θ) =
∫ ∏

(i,n)∈I

P(ri,n|ti,n)P(t|θ)dt, θ = {θΣ, θΩ} (6)

where I is the index set of entity pairs having observed links such that RI = {ri,n}(i,n)∈I.
The authors propose using a family of stochastic relational processes to calculate the

prior P(t|θ) in Eq. (6) such that t : U × V → R takes the form

t(u, v) =
1√
d

d∑
k=1

fk(u)gk(v) (7)

where fk(u)
iid∼ GP(0,Σ), gk(v)

iid∼ GP(0,Ω), and d represents the degrees of freedom. To
calculate the likelihood P(ri,n|ti,n), the authors state that multiple choices exist depending
on the inference problem. For binary classification relation inference (i.e., is there a link
between entities u and v or not?), they suggest using P(ri,n|ti,n) = Φ(ri,nti,n) where Φ(·) is
a cumulative normal function and ri,n ∈ {−1,+1}.

The parameters θ are then learned through expectation-maximization. Let F = {fi,k},G =
{gn,k}, fk = [f1,k, ..., fN,k]

T , and gk = [g1,k, ..., gM,k]
T , where fi,k = fk(ui) and gn,k =

gn(vk). The E-step involves calculating the posterior probability P(F,G|RI, θ) which is
proportional to the joint distribution of the complete data and can be factorized as:

P(F,G,RI|θ) ∝
∏

(i,n)∈I

P
(
ri,n

∣∣∣∣∑d
k=1 fi,kgn,k√

d

)
exp

{
− 1

2

d∑
k=1

[fTk Σ−1fk + gT
k Ω

−1gk]

}
(8)

Exact inference in (8) is intractable due to the coupling of f and g in the the likeli-
hood, so the authors choose to calculate the value using a Laplacian approximation, which
approximates P(F,G|RI, θ) using a multivariate normal distribution q(F,G|β) with suffi-
cient statistics β. The means of β are computed through solving the following minimization
problem,

{F∗,G∗} = arg min
{F,G}

{
J(F,G) = − logP(RI,F,G|θ)

}
(9)

(9) can be solved using the conjugate gradient method, with gradients calculated as

∂J(F,G)

∂F
=

1√
d
SG+Σ−1F,

∂J(F,G)

∂G
=

1√
d
STF+Ω−1G (10)
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where S ∈ RN×M have elements

si,n =

{
∂[− log P(ri,n|ti,n)]

∂ti,n
if (i, n) ∈ I

0, otherwise

To solve for the covariance matrices, the authors first assume that there exist disjoint
groups of latent variables, which allow the distribution q to be factorized as q(F,G|β) =∏d

k=1 q(fk|f∗k ,Σk)q(gk|g∗
k,Ωk). This allows for the inverse Hessian of J(F,G) to be calcu-

lated for each group separately, yielding the covariance matrices:

Σk = (Φ(k) +Σ−1)−1, with ϕ
(k)
i,i =

∑
n:(i,n)∈I

ζi,ng
2
n,k

d
, ϕ

(k)
i,j = 0 (11)

Ωk = (Ψ(k) +Σ−1)−1, with ψ(k)
n,n =

∑
i:(i,n)∈I

ζi,nf
2
i,k

d
, ψ(k)

n,m = 0 (12)

where ζi,n =
∂2[− log P(ri,n|ti,n)]

∂t2i,n
.

The M-step involves assigning a hyper prior P(θ|α) and estimating θ by maximizing a
penalized marginal likelihood:

θ∗ = arg max
θ={θΣ,θΩ}

{
log

∫
G

∫
F

P(RI,F,G|θ)dFdG+ logP(θ|α)
}

(13)

The authors choose to assign both of these hyper priors as conjugated inverse-Wishart
distributions parameterized by λd and Σ0 or Ω0, appropriately. Then, the hyperparameters
Σ and Ω are updated by maximizing the expected log-likelihood of the complete data

max
{Σ,Ω}

Eq(F,G|β)[logP(RI,F,G|Σ,Ω)] + logP(Σ|λd,Σ0) + logP(Ω|λd,Ω0) (14)

This has an analytical solution of

Σ =
λΣ0 +

1
d

∑d
k=1(f

∗
k f

∗T
k +Σk)

λ+ 1
, Ω =

λΩ0 +
1
d

∑d
k=1(g

∗
kg

∗T
k +Ωk)

λ+ 1
(15)

In summary, the algorithm iterates between solving Eqs. (9), (11), (12) in the E-step
and (13) in the M-step until convergence. Then P(ri,n|t∗i,n) are used to make predictions,
where t∗ is computed from F∗ and G∗ [24].

2.3 Path ranking algorithms

Lao and Cohen originally introduced the path ranking algorithm (PRA) as a method for
answering what they refer to as typed proximity queries over a knowledge graph [10]. In
such queries, a user provides as input a set of query nodes and a relation type, and receives as
output a ranked list of nodes ordered by probability of connection to the query node via the
relation type. The authors were specifically interested in queries over knowledge graphs of
published biomedical literature, such as venue recommendation (i.e., recommending a venue
to publish a new research paper), reference recommendation (i.e., recommending relevant
citations for a new paper), expert finding (i.e., finding a domain expert for a particular
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topic), and gene recommendation (i.e., predicting what genes a researcher will publish on
over the next year).

The PRA is composed of three components: (1) feature selection through the enumera-
tion of all possible relation paths of length l connecting query and target nodes; (2) feature
computation via recursively computing the probabilities that a random walker would arrive
at a target node from the source node via a path of the types enumerated in (1); and (3)
relation-specific classification based on the features computed in (2).

To describe the algorithm in further detail, we first specify a few definitions. Let r be a
binary relation, such that we denote r(e, e′) if e and e′ are related by r. Let dom(r) denote
the domain of the relation and let range(r) denote its range. A relation path (or path, for
short) P , is then a sequence of relations r1, ..., rℓ, such that ∀1 < i < ℓ − 1, range(ri) =
dom(ri+1).

Feature selection in Lao and Cohen’s original PRA consists of enumerating all possible
relation paths between a specified query and target node of length at most ℓ via a random
walk. Let Pℓ = {P1, ..., Pn} represent this set of paths. These path types represent features
that are likely to be useful in predicting new instances of the relation represented by the
query and target node pairs. Each of these enumerated relation paths then takes a value
computed via the path-constrained random walk described below.

For any relation path P = R1, ..., Rℓ and a query node s ∈ dom(P ), a path-constrained
random walk defines a distribution hs,P over a target node e in the following manner. If P
is the empty path, define

hs,P (e) =

{
1, if e = s

0, otherwise
(16)

If P is not empty, let P ′ = R1, ..., Rℓ−1, and define the distribution

hs,P (e) =
∑

e′∈range(P ′)

hs,P ′(e′) · P(e|e′;Rl) (17)

where P(e|e′;Rl) = 1{Rℓ(e
′,e)}

|Rℓ(e′,·)| is the probability of reaching node e from node e′ with a

one-step random walk with edge type Rℓ. From this definition, we can see that hs,P (e) =
P(e|s, P ), or, the probability that a random walker would reach node e from s by following
a path of the relation types specified in P .

This random walk is repeated for all paths in Pℓ, resulting in features with values
{hs,Pi

(e)}ni=1. The idea is then to calculate a score for e based on its relation to s as a
weighted linear combination of the features, i.e.

score(e; s) =

n∑
i=1

hs,Pi(e)θi (18)

If done for multiple target nodes, this score can be used to rank them as answers to the
query defined by s and a relation r.

From this point, the parameters θ must be learned for each r ∈ R, which the authors
pursue via logistic regression. Given a relation r and a set of node pairs {si, ei} for which
we know whether or not r(si, ei) holds, a training dataset D = {(xi, yi)} can be created
such that xi is a vector of all the path features {hsi,Pj

(ei)}nj=1 and yi is a boolean indicator
of whether or not r(si, ei) holds. D is used to train a logistic function to predict the
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conditional probability P(y|x; θ), in effect learning the parameter vector θ, by maximizing
the L2-regularized objective function:

J(θ) =
∑
i

[yi log pi + (1− yi) log(1− pi)]− λ∥θ∥2 (19)

where pi = P(yi = 1|xi; θ) =
exp(θTxi)

1+exp(θTxi)
. The authors note that other cost functions could

be used to fit different classifiers to this data, such as negative hinge loss in the case of
support vector machines or negative exponential loss for boosting; however, almost all of
the literature covered in this review uses the binomial log-likelihood. Such a classifier is
trained for each relation r ∈ R, whose parameters can be used to calculate scores for each
pair of query and target nodes in the KG as defined in (18) for the proximity query question
originally posed by the authors. Alternatively, these classifiers can be used directly for
relational inference between nodes in the KG.

2.3.1 PRA extensions

Since Lao and Cohen’s publication of the PRA in [10], numerous extensions of the algorithm
have been created that attempt to improve its performance and scalability for relational
inference, as well as to overcome certain incapacities it possesses. One issue with the original
algorithm is that it can quickly become impractical to enumerate all relation paths between
two nodes in a KG as the number of possible edge types grows, even when the paths
are constrained to be of length at most l. Lao et al. approach this issue by modifying
the path generation procedure in PRA to produce a smaller and more informative set of
relation paths (features) which are more useful for relational inference [11]. Another major
issue with PRA is that if there is no path connecting two nodes in the graph, then the
algorithm cannot predict any relation instance between them. Gardner et al. address this
deficiency by allowing the path-constrained random walk in the feature computation step
to follow a different outgoing edge at any point along the path, so long as the outgoing
edge is semantically similar (in terms of vector space representations) to the one in the
original path [6]. Other algorithms have been developed as well, such as Subgraph Feature
Extraction [5] and Hierarchical Random-walk Inference algorithm [12], which combine a
global PRA procedure with local procedures that create more expressive features from the
neighborhoods of entity pairs within a graph. These variations all show major predictive
and computational performance improvements over the original PRA presented here, but
we omit a more thorough explanation of them in this paper.

2.4 Message passing & graph neural networks

Message-passing algorithms for inference on graphical models were first introduced by Judea
Pearl in 1982 [14] and have since been applied to many fields where graphs provide canonical
representations, such as artificial intelligence, information theory, and physics. However, in-
ference using message-passing algorithms can only be computed exactly on trees; in general
graphs, they can only provide approximations. In an effort to take advantage of modern
advancements in deep learning and to further generalize the task of inference over graph-
ical models, Gilmer et al. (2017) formalized the notion of graph neural networks (GNNs),
originally calling them message passing neural networks [7].

A GNN takes as input a graph G = (V,E) which can be directed or undirected. Each
node i ∈ V is associated with a feature vector xi, and optionally each edge (i, j) ∈ E can
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also be associated with a feature vector x(i,j). Each feature vector is associated with a
hidden representation, hi for nodes and h(i,j) for edges. Initially, hi = xi, and ”messages”
are propagated along edges in the graph as follows

h(i,j) = fedge(hi,hj ,x(i,j))

h′
i = fnode(hi,

∑
j∈Ni

h(j,i),xi)
(20)

where Ni is the set of nodes with edges directed into node i, and fedge and fnode are learnable
functions, typically neural networks.

Kipf approaches the task of link prediction using graph auto-encoders (GAEs) [8]. That
is, a graph convolutional network (GCN) encoder which takes as input the data X and
graph adjacency matrix A and outputs a matrix Z of hidden representations. In particular,
Kipf uses a two-layer GCN encoder of the form

Z = ÂReLU(ÂXW0)W1 (21)

where Â = D− 1
2AD− 1

2 is the symmetrically normalized adjacency matrix (D is the diagonal
degree matrix, Di,i =

∑
j Ai,j), and W0 ∈ Rdin×dhid and W1 ∈ Rdhid×demb are trainable

parameter matrices.
The task of the decoder is then to reconstruct the adjacency matrix A from Z. This

is done by introducing a scoring function s(zi, zj) that is designed to assign high scores to
nodes which should be connected and low scores to nodes which should not be connected.
In particular, Kipf uses an inner-product scoring function s(zi, zj) = z⊤i zj such that the
reconstructed adjacency matrix A′ is computed as

A′ = σ(ZZ⊤) (22)

where σ is the logistic sigmoid function [8].
The GAE can then be trained by optimizing the cross-entropy loss

L = − 1

N2

N∑
i=1

N∑
j=1

Ai,j log σ(s(zi, zj)) + (1−Ai,j) log(1− σ(s(zi, zj))) (23)

When applied to the Cora, Citeseer, and Pubmed data sets, GAE and variational GAE
models taking advantage of node features produce better average precision and area un-
der the ROC curve scores compared to two popular baselines SpectralEmbedding [19] and
DeepWalk [15], demonstrating the power of GNNs for performing inference over graphs.

3 Conclusion

In this paper, we have presented a brief overview of several methods for conducting link
prediction over knowledge graphs. Each of these methods utilizes the topology of an incom-
plete KG, G, in distinct ways to infer probabilistically the presence or absence of proposed
triplets in the corresponding complete KG, Ggold. This survey is far from exhaustive, and
we have notably omitted many popular methods which focus on projecting the knowledge
graph into continuous vector space and conducting inference on these embeddings. From
this, it should be clear that link prediction in KGs has been and remains a rich field of
research, which will likely continue to evolve with current advances in machine and deep
learning.

8



4 References

[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: A collabora-
tively created graph database for structuring human knowledge. In Proceedings of the
2008 ACM Sigmod International Conference on Management of Data, pages 1247–1250,
2008.

[2] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hr-
uschka Jr., and Tom M. Mitchell. Toward an architecture for never-ending language
learning. In Proceedings of the Twenty-Fourth Conference on Artificial Intelligence
(AAAI 2010), 2010.

[3] Xiaojun Chen, Shengbin Jia, and Yang Xiang. A review: Knowledge reasoning over
knowledge graph. Expert Systems with Applications, 141:112948, 2020.

[4] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic
relational models. In IJCAI, volume 99, pages 1300–1309, 1999.

[5] Matt Gardner and Tom Mitchell. Efficient and expressive knowledge base completion
using subgraph feature extraction. In Conference on Empirical Methods in Natural
Language Processing, pages 1488–1498, 2015.

[6] Matt Gardner, Partha Talukdar, Jayant Krishnamurthy, and Tom Mitchell. Incorpo-
rating vector space similarity in random walk inference over knowledge bases. In Con-
ference on Empirical Methods in Natural Language Processing, pages 397–406, 2014.

[7] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. Neural message passing for quantum chemistry, 2017.

[8] Thomas N Kipf. Deep learning with graph-structured representations. 2020.

[9] Daphne Koller and Avi Pfeffer. Probabilistic frame-based systems. In AAAI/IAAI,
pages 580–587, 1998.

[10] Ni Lao andWilliam Cohen. Relational retrieval using a combination of path-constrained
random walks. Mach Learn, 81:53–67, 2010.

[11] Ni Lao, Tom Mitchell, and William Cohen. Random walk inference and learning in a
large scale knowledge base. In Conference on Empirical Methods in Natural Language
Processing, pages 529–539, 2011.

[12] Qiao Liu, Liuyi Jiang, Minghao Han, Yao Liu, and Zhinguang Qin. Hierarchical random
walk inference in knowledge graphs. ACM, 2016.

[13] G.A. Miller. Wordnet: A lexical database for english. Communications of the ACM,
38:39–41, 1995.

[14] Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach.
Cognitive Systems Laboratory, School of Engineering and Applied Science . . . , 1982.

[15] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701–710, 2014.

9



[16] Amit Singhal. Introducing the knowledge graph: things, not strings.
https://blog.google/products/search/introducing-knowledge-graph-things-not/, 2012.
Accessed 2021-12-16.

[17] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning
with neural tensor networks for knowledge base completion. In Advances in neural
information processing systems, pages 926–934, 2013.

[18] F.M. Suchanek, G. Kasneci, and G. Weikum. Yago: A large ontology from wikipedia
and wordnet. Web Semantics: Science, Services and Agents on the World Wide Web,
6:203–217, 2008.

[19] Lei Tang and Huan Liu. Leveraging social media networks for classification. Data
Mining and Knowledge Discovery, 23(3):447–478, 2011.

[20] Ben Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic models for
relational data. arXiv preprint arXiv:1301.0604, 2002.

[21] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. Link prediction in
relational data. Advances in neural information processing systems, 16:659–666, 2003.

[22] Benjamin Taskar, Eran Segal, and Daphne Koller. Probabilistic classification and clus-
tering in relational data. In International joint conference on artificial intelligence,
volume 17, pages 870–878. Lawrence Erlbaum Associates LTD, 2001.
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