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Abstract

We construct a natural language inference
(NLI) benchmark1 to test the spatial reasoning
capabilities of language models (LMs). Many
commonsense benchmarks test spatial reason-
ing abilities simultaneously with other reason-
ing abilities, and a few benchmarks test certain
specific spatial reasoning abilities rigorously,
but no prior works have sought to evaluate LMs
on a comprehensive suite of spatial reasoning
tasks. To do this, we use templates to procedu-
rally generate a large quantity of NLI questions
relating to four categories of spatial reasoning
– motion, distance, orientation, containment –
and evaluate state-of-the-art NLI and QA mod-
els on these questions. We find that all families
of LMs perform poorly on many of the spatial
reasoning categories, demonstrating clear gaps
in their understanding of space and its relation-
ship to people and objects.

1 Introduction

Benchmarking language models’ (LMs) abilities
to perform commonsense reasoning is an essential
step toward building models that can be deployed in
the real world. LMs have shown promise on many
commonsense reasoning benchmarks (Zellers et al.,
2018; Singh et al., 2021; Zhang et al., 2018; Talmor
et al., 2019). However, most of these benchmarks
aim for broad coverage over several reasoning do-
mains, often testing multiple types of reasoning
simultaneously. Doing so makes it difficult to pro-
vide comprehensive coverage of a single domain,
which in turn reduces a benchmark’s ability to di-
agnose where the weaknesses of models lie.

To this end, many physical commonsense rea-
soning benchmarks have emerged, seeking to nar-
row in on testing the physical reasoning abilities of
LMs. For example, PIQA (Bisk et al., 2019) is a
multiple-choice task that requires LMs to reason

1Code available for download at https://github.
com/josephcappadona/spatialQA

about the physical consequences of actions on an
environment (see Appendix B.1). PROST (Aroca-
Ouellette et al., 2021) is a cloze-style multiple-
choice benchmark that requires reasoning about
concepts like stackability, breakability, and rolla-
bility of objects (see Appendix B.2).

Within the domain of physical commonsense
reasoning, spatial commonsense reasoning has also
received some attention. For example, Weston et al.
(2015) introduce BABI, a set of 20 toy tasks which
aim to test a model’s ability to reason about the
properties and relationships of agents and objects
in a variety of everyday contexts. Each task tests a
unique reasoning capability and is designed so that
most adult humans could potentially score 100%.
Several of the tasks proposed in BABI relate to
spatial reasoning, for example, Task 17 tests posi-
tional reasoning, Task 18 tests size reasoning, and
Task 19 tests path finding (see Appendix B.3). The
dataset is generated using a simulation of agents
and objects in an environment where agents ran-
domly interact with the environment and the corre-
sponding actions and states are collected and used
to construct task examples.

SPARTQA (Mirzaee et al., 2021) builds off
BABI’s positional reasoning task (Task 17) by
building a spatial reasoning benchmark that rig-
orously tests concepts like containment and orien-
tation (see Appendix B.4). The benchmark is con-
structed by applying hand-designed context free
grammars and context-sensitive rules to images
from the Natural Language for Visual Reasoning
dataset (Suhr et al., 2017).

Our test suite covers a superset of the spatial
relations covered in BABI and SPARTQA, aiming
to provide a more comprehensive benchmark for
spatial reasoning. We diverge from the literature
in that we are not interested in seeing how LMs do
when fine-tuned on our benchmark. Instead, we
test pre-trained LMs out-of-the-box, aiming to see
how well they generalize from their training data.

https://github.com/josephcappadona/spatialQA
https://github.com/josephcappadona/spatialQA


Input Expected #

Motion P: {Tom} is {swimming, running}.
H: {Tom} is {stationary, not in motion}.

contradiction 72

Orientation P: {The park} is {north} of {the theater}.
H: {The theater} is {north, east, west} of {the park}.

neutral or
contradiction

72

Distance P: {The ball} is {touching} {the water}.
H: {The water} is {touching, in contact with} {the ball}.

entailment 120

Containment P: {A bag} {contains} {apples}.
H: {Apples} are {inside, within} {a bag}.

entailment 18

Metaphor P: {John} got out of {doing chores}.
H: {John} was {inside, contained by} {doing chores}.

neutral or
contradiction

12

Table 1: Example premises (P) and hypotheses (H) for each type of spatial relation. Curly braces indicate lexical
items that can be substituted programmatically using templates, with some non-exhaustive example words and
phrases. The final column is the number of examples generated for the corresponding template.

The need for this type of generalization test-
ing is demonstrated well by Ribeiro et al.’s (2020)
CHECKLIST, an application for efficiently produc-
ing suites of tests for comprehensive behavioral
testing of LMs. The approach draws inspiration
from software engineering research, which empha-
sizes rigorous black-box testing paradigms to val-
idate software systems and check for critical fail-
ures.

A variety of techniques have been used in the
literature to generate benchmark data, like crowd-
sourcing (Singh et al., 2021), simulations (Weston
et al., 2015), and grammars (Mirzaee et al., 2021).
However, some recent publications like PROST
opt for a CHECKLIST-like approach and use tem-
plates where lexical items are substituted in. This
is the approach we employ due to the ability to
generate a large amount of test data very quickly.

To summarize our contributions, we expand
upon the existing work on spatial reasoning bench-
marks by introducing a natural language inference
(NLI) benchmark which tests four categories of spa-
tial reasoning: motion, orientation, distance, and
containment. An additional category, metaphor,
is used to test whether models can distinguish be-
tween literal and figurative uses of spatial reasoning
concepts. We then test state-of-the-art QA and NLI
models out-of-the-box (without fine-tuning on our
benchmark) and report the results.

2 Test Suite

Our test suite consists of 20,480 premise-
hypothesis pairs created from 92 templates2 that

2See Table 3 in Appendix A for a numerical breakdown of
the number of tests and examples for each category

test a model’s ability to make inferences about
spatial relations. Each example contains a single-
sentence premise containing a spatial cue (e.g. in,
above, near), and a hypothesis that tests the model’s
ability to identify and reason about that spatial re-
lation. Drawing heavily from psycholinguistic re-
search of human spatial typology (Levinson et al.,
2003) and the tasks and relations covered by BABI
and SPARTQA, we identify four distinct categories
of spatial reasoning worth testing: motion, orien-
tation, distance, and containment. Examples of
premise-hypothesis pairs from these categories are
given in Table 1.

Test examples are generated through the use of
templates that test one particular spatial relation
type. For instance, one template to test the symmet-
ric property of proximity is given below:

Premise: {A} is {near} to {B}.
Hypothesis: {B} is {near} to {A}.

Each template is then populated with relevant
lexical items. Varying the lexical inputs of each
template tests the robustness of a model’s spatial
inferences with regard to irrelevant changes in the
input — all else being equal, a model should predict
the same labels for all premise-hypothesis pairs in
the template. In some cases, we allow multiple
entailment relationships as shown in Table 1.

For each spatial category, we also include
metaphorical premise-hypothesis pairs that con-
tain the same syntactic triggers as physical spatial
relations. Metaphorical template structures were
adapted from MetaNet (Dodge et al., 2015)3. We in-
clude these metaphorical templates to test whether
a model can identify when spatial relationship cues



do not actually trigger a spatial relationship. For
instance, both “The school is near the theater” and
“John is near death” contain the proximity cue
“near”. However, the first sentence entails “The
school is in close physical proximity to the the-
ater”, while the second sentence does not entail
“John is in close physical proximity to death”.

3 Testing

We test our spatial reasoning benchmark on models
from multiple families that are at or near state-of-
the-art4 on related natural language inference tasks
like MultiNLI (Multi-Genre NLI) (Williams et al.,
2018), QNLI (Question-answering NLI) (Wang
et al., 2018), WNLI (Winograd NLI) (Wang et al.,
2018), and ReCOrD (Reading Comprehension with
Commonsense Reasoning Dataset) (Zhang et al.,
2018).

In particular, we test the following models:
GPT-35, UnifiedQAv2, T5, DeBERTa fine-tuned
on MultiNLI, RoBERTa fine-tuned on MultiNLI,
ALBERTv2 fine-tuned on MultiNLI, and XLNet
fine-tuned on MultiNLI. GPT-3 was accessed us-
ing the OpenAI API6 and all other models were
downloaded from HuggingFace (Wolf et al., 2020).
Model sizes are reported in Table 4 of Appendix
A.

4 Results

Results from testing each model on our test suite
are shown in Table 2. Accwopc represents the aver-
age accuracy for each model across test templates
without partial credit. In this paradigm, a model
must correctly answer all entailments within a par-
ticular test template to receive any credit for that
template. Accpc represents the average accuracy
with partial credit, where tests are no longer all-
or-nothing. For example, a model that correctly
predicts the labels of 99% of a template’s exam-
ples obtains an Accpc score of 99% and an Accwopc
score of 0% for that template.

Despite our benchmark’s relative simplicity, all
of the models fail on parts of our test suite with no
model passing all tests in any category.

3https://metaphor.icsi.berkeley.edu/
pub/en/index.php/

4As reported on https://paperswithcode.com/
leaderboards as of April 2022

5Since GPT-3, UnifiedQAv2, and T5 are not NLI models
by design, we slightly modify the task to fit their respective
input formats. See Appendix C for details.

6https://openai.com/api/

Model Accwopc Accpc (st.dev)
GPT-3 26.5 61.1 (6.8)

UnifiedQAv2 32.7 33.3 (15.7)
T5 29.5 51.9 (23.3)

DeBERTa 30.2 56.5 (21.0)
RoBERTa 30.9 54.7 (18.7)
ALBERT 29.7 43.8 (22.2)

XLNet 30.5 50.9 (17.6)

Table 2: Mean model accuracy with/without partial
credit, averaged over all reasoning categories, for the
largest model in each family.

Figure 1: Mean model accuracy with (bottom) and with-
out (top) partial credit, for each reasoning category, for
the largest model in each model family. Precise numeri-
cal results for both graphs are present in Tables 5 and 6
of Appendix A.

Table 2 shows that there is not a clear relation-
ship between Accwopc and Accpc, since GPT-3 had
the lowest Accwopc score and the highest Accpc
score and UnifiedQAv2 had the highest Accwopc
score and the lowest Accpc score. Additionally,
as evidenced by the generally large standard de-
viations, model performance varied widely across
categories for most models, with GPT-3’s perfor-
mance across categories being the most stable by a
fair margin with a standard deviation of 6.8.

4.1 Analysis

Figure 1 breaks down model performance by rea-
soning category. One trend across models is that 5
out of 7 models were able to make inferences re-
lated to motion and distance better than they were

https://metaphor.icsi.berkeley.edu/pub/en/index.php/
https://metaphor.icsi.berkeley.edu/pub/en/index.php/
https://paperswithcode.com/
https://openai.com/api/


Figure 2: Mean model accuracy with partial credit, aver-
aged over all reasoning categories, plotted with respect
to the size of each model

able to make inferences related to containment and
orientation. Why this is the case is unclear, but one
hypothesis is that distance and motion relations
may be more frequently represented in the training
corpora for these models. We leave exploration of
this and related questions for future work.

Considering each spatial relation in isolation,
most models performed worse on metaphorical
templates in that category than on literal templates.
One exception to this rule was ALBERT, which was
the only model whose best category was metaphor.
However, ALBERT’s improved performance on
metaphorical templates comes with concomitant
poor performance on literal templates. We hypoth-
esize that models only generalize one entailment
pattern for a given spatial relation, and since two
patterns of reasoning are required to deal with lit-
eral and metaphorical meanings, better generaliza-
tion on literal readings directly results in worse
generalization on metaphorical readings, and vice
versa.

Additionally, model performance was often
highly sensitive to lexical changes. For instance,
GPT-3, UnifiedQAv2, DeBERTa and RoBERTa
were able to correctly identify the correct entail-
ment for between 40% and 100% of the examples
generated from the following template: "A is in
B and B is in C" → "A is in C". However, none
of these models were able to identify the correct
entailment for "A fits in B and B fits in C" ↛ "A
is in C" in any of the 792 examples for that tem-
plate. More examples of heavily failed templates
are visible in Table 9 of Appendix A.

4.2 Model size

Figure 2 shows that there is not a clear relation-
ship between model size and overall performance
on our test suite. While some models like T5
and RoBERTa appear to perform slightly better
as model size increases, others like UnifiedQAv2

appear to perform worse. The relationship between
model size and performance is broken down by
category in Figures 7 and 8 in Appendix A. There
we can see that for the metaphor category in partic-
ular, there is a clear decrease in performance for all
model families as model size increases. However,
the lack of a clear relationship between model size
and performance in general suggests that spatial
reasoning abilities might not emerge simply from
increasing model size; rather, it is possible that ei-
ther the training data or the language modeling task
(or both) may not provide a suitable signal for such
reasoning to be learned.

5 Future Work

Future work should involve:

• testing models fine-tuned on different datasets
to see how they affect generalization on our
task

• taking the test suite beyond synthetic data,
e.g., by mining examples from real-world cor-
pora, or by crowdsourcing templates, lexical
items, and/or labels

• verifying the performance of GPT and Uni-
fiedQAv2 when the task is more explicitly
designed as a QA task rather than an NLI task

• analyzing the frequency of spatial relations in
common training corpora and attempting to
relate it to relative category performance

6 Conclusion

We constructed an NLI benchmark to evaluate the
spatial reasoning abilities of language models. Our
test suite was constructed using templates where
sets of lexical items are substituted in to produce
a large number of examples from relatively few
templates. We tested four categories of spatial rea-
soning – motion, orientation, distance, and con-
tainment – which were chosen to provide a broad
coverage of the types of spatial relations used in
English. We also test inference over metaphors
which use similar types of spatial relations. We
found that even the largest models which perform
state-of-the-art on a variety of NLI and QA bench-
marks did poorly on all categories, with no model
passing all tests in any category, demonstrating that
there are clear gaps in the commonsense reasoning
abilities of language models which are unlikely to
be fixed simply by scaling up and training on more
data.



7 Ethical Considerations

Given that our test suite is designed to evaluate real-
world models, it is important that the templates that
we have written accurately reflect the language and
spatial reasoning used by a wide variety of English
speakers. However, our test suite has only been
looked over by the four authors, and so we cannot
make any broad claims about the coverage of our
test cases. It is possible that we have neglected
certain types of spatial relations when constructing
our templates. Additionally, the labels for our tem-
plates were also written by the authors, and there
might be disagreements over these labels when out-
siders are consulted. Therefore, before the results
of our benchmark can be fully trusted, a more thor-
ough vetting and analysis of our test suite must
be done, ideally through a crowdsourcing platform
where workers can validate the labels. Until such
work is done, we caution researchers using our task
for training or evaluation.

8 Collaboration Statement

Joe and Cara were primarily responsible for con-
structing the suite of tests. Yimin and Jiaxuan were
primarily responsible for testing the models. All
group members helped with analyzing the results
and writing.
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A Appendix A: Additional Figures

Category # templates # examples
Motion 12 552

Orientation 7 2192
Distance 20 2260

Containment 28 14550
Metaphor 27 926

94 20480

Table 3: A numerical breakdown of the number of tem-
plates and total number of examples generated for each
category

Model # parameters
GPT-3 B 2.7B

M 6.7B
L 13B

XL 175B
UnifiedQAv2 S 60M

B 220M
L 770M

XL 3B
T5 S 60M

B 220M
L 770M

XL 3B
DeBERTa B 86M

L 350M
XL 700M

XXL 1.32B
RoBERTa B 125M

L 355M
ALBERT L 17M

XLNet B 110M

Table 4: The number of parameters for each model

Figure 3: Box plot of Accpc for all tests across all mod-
els, broken down by category

Figure 4: Mean model accuracy without partial credit,
averaged over all reasoning categories, plotted with re-
spect to the size of each model



Model Motion Orient. Dist. Contain. Metaph. Avg
GPT-3 33.3 14.3 30.0 21.4 33.3 26.5

UnifiedQAv2 33.3 42.9 30.0 50.0 7.4 32.7
T5 41.7 14.3 55.0 17.9 18.5 29.5

DeBERTa 41.7 14.3 55.0 25.0 14.8 30.2
RoBERTa 41.7 14.3 55.0 28.6 14.8 30.9
ALBERT 8.3 0.0 45.0 25.0 70.4 29.7

XLNet 25.0 14.3 55.0 28.6 29.6 30.5

Figure 5: Mean model accuracy without partial credit, broken down by category, for the largest model in each family

Model Motion Orient. Dist. Contain. Metaph. Avg (st.dev)
GPT-3 64.4 68.0 61.7 61.4 49.8 61.1 (6.8)

UnifiedQAv2 33.3 43.3 30.0 50.7 9.3 33.3 (15.7)
T5 79.9 33.7 70.0 50.7 25.0 51.9 (23.3)

DeBERTa 76.7 55.0 71.0 57.1 22.8 56.5 (21.0)
RoBERTa 76.7 53.9 63.9 53.4 26.0 54.7 (18.7)
ALBERT 45.7 17.2 53.0 28.4 74.5 43.8 (22.2)

XLNet 73.5 33.2 61.0 53.4 33.6 50.9 (17.6)

Figure 6: Mean model accuracy with partial credit, broken down by category, for the largest model in each family



Figure 7: Mean accuracy without partial credit for each
category, plotted with respect to model size

Figure 8: Mean accuracy with partial credit for each
category, plotted with respect to model size



Category Template Expected Avg.
Accpc

Motion P: {John} is {running}.
H: {John} is {thinking}.

neutral 14.3

Motion P: {John} is {in motion}.
H: {John} is {thinking}.

neutral 37.0

Motion P: {John} is {laying down}.
H: {John} is {thinking}.

neutral 49.7

Orientation P: The {theater} is {north} of the {park}.
H: The {theater} is {north} of the {school}.

neutral 2.7

Orientation P: The {block} is {above} the {book}.
H: The {book} is {above} the {block}.

contradiction 39.8

Orientation P: The {cup} is {above} of the {block}.
H: The {block} is {below} of the {the cup}.

entailment 41.2

Distance P: The {ball} is not {touching} the {cup}.
H: The {cup} is {near} the {ball}.

neutral 11.1

Distance P: The {ball} is not {touching} the {cup}.
H: The {ball} is not {near} the {cup}.

neutral 14.3

Distance P: The {ball} is not {touching} the {cup}.
H: The {cup} is not {near} the {ball}.

neutral 14.3

Containment P: The {block} {fits in} the {cup}, and the {cup} {fits in}
the {cabinet}.
H: The {cabinet} {contains} the {cup}.

neutral 14.3

Containment P: The {block} {fits in} the {cup}, and the {cup} {fits in}
the {cabinet}.
H: The {block} {is in} the {cabinet}.

neutral 14.3

Containment P: The {block} {fits in} the {cup}. The {cup} {fits in}
the {cabinet}.
H: The {cabinet} {contains} the {block}.

neutral 14.3

Metaphor P: {John} is jumping {to conclusions}.
H: {John} is {in motion}.

neutral or
contradiction

2.7

Metaphor P: The {girl} is {forced} into {movement}.
H: The {girl} is {in} {movement}.

neutral or
contradiction

12.7

Metaphor P: {John} is skipping the {show}.
H: {John} is {in motion}.

neutral or
contradiction

13.4

Figure 9: A sample of three test cases for each category with low (relative to other test cases) Accpc scores averaged
across the largest model in each model family



Category Template Expected Avg.
Accpc

Motion P: {John} is {moving}.
H: {John} is {in motion}.

entailment 85.7

Motion P: {John} is {not moving}.
H: {John} is {stationary}.

entailment 83.3

Motion P: {John} is {sitting}.
H: {John} is {stationary}.

entailment 71.7

Orientation P: The {theater} is {north} of the {library}.
H: The {library} is {north, east, west} of the {theater}.

neutral or
contradiction

62.1

Orientation P: The {post office} is {north} of the {library}.
H: The {library} is {south} of the {post office}.

entailment 57.1

Orientation P: The {ball} is {left} of the {block}.
H: The {block} is {right} of the {ball}.

entailment 51.0

Distance P: The {block} is {touching} the {book}.
H: The {book} is {close to} the {block}.

entailment 85.7

Distance P: The {block} is {far from} the {book}.
H: The {book} is not {close to} the {block}.

entailment 85.7

Distance P: The {block} is {far from} the {book}.
H: The {block} is {touching} the {book}.

contradiction 85.0

Containment P: The {ball} {cannot fit in} the {cup}.
H: The {cup} {can contain} the {ball}.

contradiction 88.5

Containment P: The {apples} are {placed} the {bucket}.
H: The {apples} are {in} the {bucket}.

entailment 84.1

Containment P: The {ball} is {in} the {cup}.
H: The {cup} is {contains} the {ball}.

entailment 81.8

Metaphor P: The {boy} put the {fiasco} behind him.
H: The {boy} is in front of the {fiasco}.

neutral or
contradiction

85.7

Metaphor P: {John} is in {disguise}.
H: {John} is physically contained in {disguise}.

neutral or
contradiction

71.4

Metaphor P: The {boy} is looking forward to the {party}.
H: The {boy} is behind the {party}.

neutral or
contradiction

57.1

Figure 10: A sample of three test cases for each category with high (relative to other test cases) Accpc scores
averaged across the largest model in each model family



B Appendix B: Dataset Examples

B.1 PIQA Dataset Examples

To separate egg whites from the yolk
using a water bottle, you should...

(a) Squeeze the water bottle and
press it against the yolk.
Release, which creates suction
and lifts the yolk.

(b) Place the water bottle and press
it against the yolk. Keep pushing,
which creates suction and lifts

the yolk

B.2 PROST Dataset Examples

A person drops a glass, a pillow, a
coin, and a pen from a balcony.

The [MASK] is most likely to break

A) glass B) pillow C) coin D) pen

B.3 bAbI Dataset Examples
Task 17: Positional Reasoning

The triangle is to the right of the
blue square.

The red square is on top of the blue
square.

The red sphere is to the right of the
blue square.

Is the red sphere to the right of the
blue square? A:yes

Is the red square to the left of the
triangle? A:yes

Task 18: Size Reasoning
The football fits in the suitcase.
The suitcase fits in the cupboard.
The box is smaller than the football.
Will the box fit in the suitcase? A:

yes
Will the cupboard fit in the box? A:

no

Task 19: Path Finding Task
The kitchen is north of the hallway.
The bathroom is west of the bedroom.
The den is east of the hallway.
The office is south of the bedroom.
How do you go from den to kitchen? A:

west, north
How do you go from office to bathroom

? A: north, west

B.4 SpartQA Dataset Examples

STORY:
We have three blocks, A, B and C.

Block B is to the right of block
C and it is below block A. Block
A has two black medium squares.
Medium black square number one is

below medium black square number
two and a medium blue square. It
is touching the bottom edge of
this block. The medium blue
square is below medium black
square number two. Block B
contains one medium black square.
Block C contains one medium blue
square and one medium black
square. The medium blue square is
below the medium black square.

QUESTIONS:
FB: Which block(s) has a medium thing

that is below a black square? A,
B, C

FB: Which block(s) doesn’t have any
blue square that is to the left
of a medium square? A, B

FR: What is the relation between the
medium black square which is in
block C and the medium square
that is below a medium black
square that is touching the
bottom edge of a block? Left

CO: Which object is above a medium
black square? the medium black
square which is in block C or
medium black square number two?
medium black square number two

YN: Is there a square that is below
medium square number two above
all medium black squares that are
touching the bottom edge of a
block? Yes



C Appendix C: Text-to-Text Prompts

C.1 GPT-3 Prompt
In the original paper, GPT-3 was evaluated on
ANLI. Therefore, we use a prompt format adapted
from Brown et al. (2020) (Figure G.7). We used
few-shot prompting due to unreliability of outputs
when prompted in a zero-shot and one-shot setting.
Few-shot examples were drawn from SNLI.
A soccer game with multiple males

playing.
Question: Some men are playing a sport.

True, false, or neither?
Answer: True

A statue at a museum that no seems to be
looking at.

Question: Tons of people are gathered
around the statue. True, false, or
neither?

Answer: False

A woman with a green headscarf, blue
shirt and a very big grin.

Question: The woman is young. True,
false, or neither?

Answer: Neither

{premise}
Question: {hypothesis} True, false, or

neither?
Answer:

C.2 UnifiedQA Prompt
Since UnifiedQA was not trained or evaluated
on any sort of NLI task, we reframe our task as
a multiple-choice task. We use a similar fram-
ing to the GPT-3 prompt described in Appendix
C.1 where the model must choose between "true",
"false", and "neither". We follow the prompt setup
used for the MCTest task as described in Khashabi
et al. (2020) (Table 1). Similar to with GPT-3,
we used few-shot prompting due to unreliability
of outputs when prompted in a zero-shot and one-
shot setting. Few-shot examples were drawn from
SNLI.
Some men are playing a sport.
(A) True (B) False (C) Neither
A soccer game with multiple males

playing.
True

Tons of people are gathered around the
statue.

(A) True (B) False (C) Neither
A statue at a museum that no seems to be

looking at.
False

The woman is young.
(A) True (B) False (C) Neither

A woman with a green headscarf, blue
shirt and a very big grin.

Neither

{hypothesis}
(A) True (B) False (C) Neither
{premise}

C.3 T5 Prompt
T5 was originally trained on MultiNLI. Therefore,
we use the prompt format used for training de-
scribed in Raffel et al. (2019) (Appendix D.5).
mnli hypothesis: {hypothesis} premise: {

premise}
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